12th International Conference on Robot Intelligence Technology and Applications

Program Booklet

PABLO NR

Contents

Program at a Glance	p. 2
Organizations and Sponsors	p. 3
Organizing Committee	p. 4
Editorial Board	p. 5
General Information	p. 6
Social Events	p. 7
Technical and Optional Tours	p. 8
Plenary Session	p. 9
Invited Talk Session	p. 12
Technical Program Details	p. 15
Campus Map & Parking Areas	p. 24

Program at a Glance

	D1, Wed 4 Dec	D2, Thu 5 Dec	D3, Fri 6 Dec	D4, Sat 7 Dec
09:00-09:30		<tit1> Invited Talk by Chuchu Fan</tit1>	<fpt> Plenary Talk</fpt>	
09:30-09:40		Break	by Mirko Kovac	
09:40-10:00		<tpt></tpt>		
10:00-10:10		Plenary Talk	Break	
10:10-10:40		by Joohyung Kim	<f01></f01>	
10:40-10:50		Break	Robotics Applications in	
10:50-11:10			Diverse Tasks I	
11:10-11:20			Break	
11:20-12:20		<to1> Control and Planning</to1>	<fo2> Robotics Applications in Diverse Tasks II</fo2>	
12:20-13:00	Registration	Lunch	Lunch	Gyeongju Cultural Tour
13:00-13:20	Opening Ceremony	Lunch	Lunch	
13:20-14:20	<wpt> Plenary Talk by Hyunchul Shim</wpt>	UNIST Lab Tour		
14:20-14:30	Break	Break		
14:30-16:00	<wo1> Special Session and AI</wo1>	<to2> Design, Sensing, and Optimization</to2>	Technical Tour @ Hyundai Motor	
16:00-16:10	Break	Break		
16:10-16:40	<wit> Invited Talk by Yuanchang Liu</wit>	<tit2> Invited Talk by Tiagrajah V. Janahiraman</tit2>		
16:40-17:40	<wp1> Poster Session I</wp1>	<tp1> Poster Session II</tp1>		
18:00-20:00	Welcome Reception @ UNIST	Conference Banquet @ Silla Stay Hotel	Ulsan Moonlight Tour	
20:00-21:00				
21:00 -22:00				

Organizations and Sponsors

Organized by

- Ulsan National Institute of Science and Technology (UNIST)
- Center for Autonomous Unmanned Monitoring Systems (CAMS)
- Korea Advanced Institute of Science and Technology (KAIST)

Supported by

- J.MARPLE
- Narma
- Pablor Air
- Human-Robot Convergence Research Center
- Eco-friendly Smart Ship Parts Technology Innovation Center (RLRC)
- Center for Development of Innovative Human Resources for Unmanned Land, Sea and Air Vehicles (Chungnam National University)
- Ulsan Culture & Tourism Foundation

Organizing Committee

Honorary Chairs

Jong-Hwan Kim, KAIST, Korea Hyun Myung, KAIST, Korea Jun Jo, Griffith University, Australia

General Chairs

Hae-Won Park, KAIST, Korea Hyondong Oh, UNIST, Korea

Program Chairs

Daehyung Park, KAIST, Korea Cunjia Liu, Loughborough University, UK

Organizing Chairs

Jeong hwan Jeon, UNIST, Korea Pawel Ladosz, University of Manchester, UK

Special Session Chairs

Myun Joong Hwang, University of Seoul, Korea Youngwoon Lee, Yonsei University, Korea

Publication Chairs

Dae-Young Lee, KAIST, Korea Min Jun Kim, KAIST, Korea

Plenary Session Chairs

Hyo-Sang Shin, KAIST/ Cranfield University, Korea Inmo Jang, Korea Aerospace University, Korea Beomjoon Kim, KAIST, Korea

Publicity Chairs

Kyuman Lee, Kyungpook National University, Korea Sehoon Ha, Georgia Tech, USA Donghyun Kim, University of Massachusetts, Amherst, USA Kyunam Kim, Sungkyunkwan University, Korea Dongheui Lee, TU Wien, Austria Shaoming He, Bejing Institute of Technology, China Antonios Tsourdos, Cranfield University, UK Yuanchang Liu, University College London (UCL), UK Anwar PP Abdul Majeed, Sunway University, Malaysia Joao Sequeira, Instituto Superior Técnico, Portugal

Award Chairs

Seungkeun Kim, Chungnam National University, Korea Donggun Lee, North Carolina State University, USA Hae-In Lee, Cranfield University, UK

Industry Inclusion Chair

Seunghan Lim, Pablo Air, Korea

Editorial Board

Local Arrangement Chairs Hyemin Ahn, UNIST, Korea Cheolhyeon Kwon, UNIST, Korea Finance Chair Han-Lim Choi, KAIST, Korea Secretary Hyangmi Kim, C-Agency, Korea

Editorial Board

Associate Editors

Ahn, Hyemin Ha, Sehoon He, Shaoming Hwang, Myun Joong Jang, Inmo Jeon, Jeong hwan Kim, Beomjoon Kim, Kyunam Kim, Kyunam Kim, Min Jun Kim, Seungkeun Kwon, Cheolhyeon Ladosz, Pawel Lee, Dae-Young Lee, Hae-In Lee, Kyuman Lim, Seunghan Liu, Yuanchang Oh, Hyondong Park, Hae-Won Sequeira, Joao Shin, Hyo-Sang Tsourdos, Antonios

General Information

Conference Venue

The conference will take place in the Auditorium Hall on the 2nd floor of the Main Administration Building (#201) at the UNIST campus in Ulsan. Refer to the campus map for directions and parking locations.

Registration Information

Registration will take place in the lobby of the Auditorium Hall (2nd floor) during the following times:

- Wednesday, December 4: 12:20 PM to 6:00 PM
- Thursday, December 5: 8:30 AM to 6:00 PM
- Friday, December 6: 8:30 AM to 12:00 PM

Conference Proceedings

Only papers selected for publication will be included in the Lecture Notes in Networks and Systems (LNNS) series by Springer, as conference proceedings. These will be published after the conference. All registered final manuscripts will be made available on a designated website during the conference.

Wifi Service

Conference attendees can access a dedicated Wi-Fi service using the following credentials:

- ID: RITA2024
- Password: Rita1234

Shuttle Bus Service

Shuttle buses will be available for transportation between Shilla Stay Ulsan and designated locations. Please note that while Shilla Stay Ulsan is the official hotel for conference delegates, attendees staying at any other hotel are also welcome to use the shuttle bus service.

Time Tuble of Shattle Das				
Route	D1, Wed 4 Dec	D2, Thu 5 Dec	Fri 6 Dec	Sat 7 Dec
Shilla Stay Ulsan> UNIST	12 PM - 12:30 PM	8 AM - 8:30 AM	8 AM - 8:30 AM	
UNIST> Shilla Stay Ulsan	8 PM - 8:30 PM	6 PM - 6:30 PM		
UNIST> Hyundai Motor			1:30 PM - 2 PM	
Hyundai Motor> Shilla Stay Ulsan			4 PM - 4:30 PM	
Hyundai Motor> UNIST			4 PM - 4:40 PM	
Shilla Stay Ulsan <> Ulsan Moonlight Tour			6 PM - 10 PM	
Shilla Stay Ulsan <> Gyeongju				9 AM - 5 PM

Time Table of Shuttle Bus

Social Events

Welcome Reception

Wednesday, December 4, 6:00 PM – 8:00 PM

@ Gyeongdong Hall (4th Floor) in the Main Administration Building (#201)

We warmly welcome all conference registrants to the reception, where you can exchange greetings and enjoy an ice-breaking atmosphere with new acquaintances. Buffet-style food and refreshments will be provided.

Lunches

- Thursday, December 5, 12:20 PM 1:20 PM
- Friday, December 6, 12:20 PM- 1:20 PM

@ Gyeongdong Hall (4th Floor) in the Main Administration Building (#201)

Lunch boxes will be provided for all attendees, offering more opportunities to build professional networks. Also, refreshments and cookies will be served in the lobby of the Auditorium Hall during each break to33 allow you to relax and socialize.

Conference Banquet

Thursday, December 5, 6:30 PM – 9:00 PM

@ Modern & Delightful, 2nd Floor, Shilla Stay Ulsan

The banquet is a highlight of the conference's social events. Buffet-style food and draft beer will be served. All registrants are invited to attend. Best papers will be announced during the awards ceremony, followed by the next RiTA announcement and a performance by a Korean traditional fusion music band. The shuttle bus will depart from the campus at 6 PM.

Technical and Optional Tours

UNIST Lab Tour

Thursday, December 5, 1:20 PM – 2:20 PM

Join us for a visit to two labs at the Artificial Intelligence Research Center and the Robotics Center. The number of visitors allowed to enter the labs is limited, and participation will be on a first-come, first-served basis.

Technical Tour - Hyundai Motor Company

Friday, December 6, 1:30 PM – 5:00 PM

All conference attendees are invited to join a technical tour of the Ulsan Hyundai Motor Plant. The tour includes a one-hour guided inspection of the production process, with both English and Korean guide services available. The charter buses will depart from the campus at 1:30 PM.

• Note: Visitors working in the automotive industry will NOT be permitted to participate in this tour.

Ulsan Moonlight Tour

Friday, December 6, 6:00 PM – 10:00 PM

You will be excited to enjoy a scenic evening exploring Ulsan's picturesque landscapes, including the Jangsaengpo Cultural Warehouse, Ulsandaegyo Bridge Observatory, and Simni Bamboo Grove Galaxy Road. This optional tour is available for US\$10 and includes transportation, an English-speaking guide, admission fees, and dinner. The tour bus will depart from Shilla Stay Ulsan at 6 PM.

Gyeongju Cultural Tour

Saturday, December 7, 9:00 AM – 5:00 PM

Discover the rich heritage of Korea in Gyeongju, a must-visit destination filled with historical treasures such as Seokguram Grotto, Bulguksa Temple, Cheomseongdae Observatory, and Woljeonggyo Bridge. This optional tour is available for US\$50 and includes transportation, an English-speaking guide, admission fees, and lunch. The minibus will depart from Shilla Stay Ulsan at 9 AM.

Plenary Session

Plenary Talk 1 Wednesday, December 4, 1:20 PM - 2:20 PM @ Auditorium (2F)

Chair: Inmo Jang, Korea Aerospace University, Korea

From Drones to Autonomous Cars to Generalist Approaches

Prof. Hyunchul Shim KAIST, Korea

Abstract: Over the last three decades, there have been dramatic advances in mobile robotics, particularly in perception, localization, and path planning for various platforms such as aerial vehicles (drones) and self-driving cars. Thanks to innovations in sensors and computing

systems, what once required large airplanes and minivan-sized robots has now been miniaturized into palm-sized drones and F1tenth cars. With the latest SLAM (Simultaneous Localization and Mapping) algorithms, these systems can now navigate and operate indoors without the aid of GPS.

Robotics is experiencing yet another quantum leap, this time driven by the integration of cutting-edge machine learning technologies. Notably, large language and visual models are enabling robots to perceive their environments and make intelligent decisions. Moreover, these breakthroughs are paving the way for a new approach where humanoid robots can take control of any vehicle as needed. In this talk, the speaker will introduce the latest advancements in autonomous drones and self-driving cars, including the Indy Autonomous Race cars. Additionally, the speaker will discuss recent progress in humanoid robots that can control various vehicles simply by "reading" their manuals, without the need for manual coding, suggesting a promising direction for future robotics research.

Biography: Dr. David Hyunchul Shim received the B.S. and M.S. degrees in mechanical design and production engineering from Seoul National University, Seoul, Korea, in 1991 and 1993, respectively, and the Ph.D. degree in mechanical engineering from the University of California Berkeley, Berkeley, USA in 2000. From 1993 to 1994, he was with Hyundai Motor Company, Korea. From 2001 to 2005, he was with Maxtor Corporation, Milpitas, CA, USA as Staff Engineer. From 2005 to 2007, he was with the University of California Berkeley as Principal Engineer, in charge of Berkeley Aerobot Team. In 2007, he joined KAIST, Daejeon, Korea, as an Assistant Professor and is now Professor in School of Electrical Engineering. He has received a number of major awards from Korean government and global events including 1st prizes in AI Grand Challenges in 2019 and 2020, and from AlphaPilot 2019. He has served as Director of KI Robotics Center at KAIST from '19 to '22 and Director of Korean RPAS Research Center from '16 to '21. He is now leading Future Challenge Research Program developing intelligent robots using foundation models, supported by Korean Government.

Plenary Session

Plenary Talk 2 Thursday, December 5, 9:40 AM - 10:40 AM @ Auditorium (2F)

Chair: Hae-Won Park, KAIST, Korea

Why Humanoids Now?

Prof. Joohyung Kim

University of Illinois Urbana-Champaign, USA

Abstract: As automation becomes increasingly prevalent in manufacturing and logistics, there is a growing demand for robots that can work closely with humans and perform tasks requiring interaction and cooperation. Companies like Boston Dynamics, Tesla, and Figure have intensified their efforts in humanoid robot development, drawing

significant attention to this field. This talk explores the reasons behind the recent surge of interest in humanoid robots by examining their historical development, advancements in AI technologies, and practical application areas. Insights will be shared on designing user-friendly robots, with an emphasis on motion control and human-robot interaction to create robots that integrate seamlessly and safely into human environments. Enhancing the usefulness of robots in daily life requires a deeper understanding of human tasks and improved methods for task execution. Ultimately, this presentation aims to highlight the importance of humanoid robots and their potential impact across various industries and everyday life, illustrating why now is the time to focus on the development and deployment.

Biography: Joohyung Kim is an Associate Professor of ECE (Electrical and Computer Engineering) and MechSE (Mechanical Science & Engineering), and the director of KIMLAB (Kinetic Intelligent Machine LAB) at University of Illinois, Urbana-Champaign. His research focuses on design and control for humanoid robots, system for motion learning in robot hardware, and safe human-robot interaction. He received BSE and Ph.D. degrees in Electrical Engineering and Computer Science (EECS) from Seoul National University, Korea, in 2001 and 2012. He was with Disney Research as a Research Scientist from 2013 to 2019. Prior to joining Disney, he was a postdoctoral fellow in the Robotics Institute at Carnegie Mellon University for DARPA Robotics Challenge in 2013. From 2009 to 2012, he was a Research Staff Member in Samsung Advanced Institute of Technology and Samsung Electronics, Korea, developing biped walking controllers for humanoid robots.

Plenary Session

Plenary Talk 3 Friday, December 6, 9:00 AM - 10:00 AM @ Auditorium (2F)

Chair: Hyo-Sang Shin, KAIST, Korea / Cranfield University, UK

Sustainability Robotics: from Nature to Robotics and Back

Prof. Mirko Kovac

Ecole Polytechnique Federal de Lausanne (EPFL), Swiss Federal Laboratories for Material Science and Technology (Empa) Switzerland/ Imperial College London, UK

Abstract: Environmental sciences rely heavily on accurate, timely and complete data sets which are often collected manually at significant

risks and costs. Robotics and mobile sensor networks can collect data more effectively and with higher spatial-temporal resolution compared to manual methods while benefiting from expanded operational envelopes and added data collection capabilities. In future, robotics and AI will be an indispensable tool for data collection in complex environments, enabling the digitalisation of forests, lakes, off-shore energy systems, cities and the polar environment. However, such future robot solutions will need to operate more flexibly, robustly and efficiently than they do today.

This talk will present how animal-inspired robot design methods can integrate adaptive morphologies, functional materials and energy-efficient locomotion principles to enable this new class of environmental robotics. The talk will also include application examples, such as flying robots that can place sensors in forests, aerial-aquatic drones for autonomous water sampling, drones for aerial construction and repair, and impact-resilient drones for safe operations in underground and tunnel systems.

Biography: Prof. Mirko Kovac is director of the Aerial Robotics Laboratory and full professor at Imperial College London. He is also heading the Laboratory of Sustainability Robotics at the Swiss Federal Laboratories for Materials Science and Technology (Empa) in Zürich and the École polytechnique Fédérale de Lausanne (EPFL). His research group focusses on the development of novel mobile robots for distributed sensing and autonomous manufacturing in complex natural environments. Prof. Kovac's particular specialisation is in robot design, hardware development and multi-modal sensor mobility. Before his appointment in London, he was post-doctoral researcher at Harvard University and he obtained his PhD at the Swiss Federal Institute of Technology in Lausanne (EPFL). He received his undergraduate degree in Mechanical Engineering from the Swiss Federal Institute of Technology in Zurich (ETHZ) in 2005. Since 2006, he has presented his work in more than 100 peer reviewed publications in leading conferences and journals, has won several best paper awards and has delivered over 100 keynote and invited lectures. He also regularly acts as advisor to government, investment funds and industry on robotics opportunities.

Invited Talk Session

Invited Talk 1 Wednesday, December 4, 4:10 PM - 4:40 PM, Virtual Talk

Chair: Hae-In Lee, Cranfield University, United Kingdom

Learning Enabled Marine Autonomy in Uncertain Marine Environments

Associate Prof. Yuanchang Liu University College London, UK

Abstract: Autonomous marine robots have made rapid advancements in recent years, driven by exciting progress in artificial intelligence (AI), advanced sensory technologies, and robust decision-making systems. These robots are now being deployed in

high-impact applications such as offshore wind farm inspections, search and rescue operations, and seabed mapping, among others. The key to achieving high-level autonomy in marine robots lies in the autonomous navigation system, which encompasses sensing/perception, planning/decision-making, and automatic control. This talk will focus on recent developments in advanced autonomy technologies for marine robots at UCL. Key topics include: 1) reliable semantic segmentation of the water surface, 2) efficient multi-constraint planning for surface vessels, 3) reinforcement learning-powered multi-task allocation, and 4) adversarial networks for enhanced maritime systems.

Biography: Dr. Yuanchang Liu is an Associate Professor and Chair of Marine Research in the Department of Mechanical Engineering at University College London. Dr Liu is also the Programme Director of MSc Power Systems Engineering. Prior to joining the department, he served as a Research Fellow in Robotic Vision and Autonomous Vehicles at the Surrey Space Centre, University of Surrey. Dr. Yuanchang Liu earned his MSc degree in Power Systems Engineering and a PhD degree in Marine Control Engineering, both from University College London in 2011 and 2016, respectively. Dr. Liu's research primarily focuses on automation and autonomy, with a special emphasis on exploring technologies related to sensing, perception, and the guidance and control of intelligent and autonomous vehicles. In recognition of his contributions, Dr. Liu was featured among the World's Top 2% Scientists by Stanford University in both 2022 and 2023. Additionally, he received the Denny Medal, awarded by the Institute of Marine Engineering, Science, and Technology (IMarEST).

Invited Talk Session

Invited Talk 2 Thursday, December 5, 9:00 AM - 9:30 AM, Virtual Talk

Chair: Joao S. Sequeira, Instituto Superior Técnico - Institute for Systems and Robotics, Portugal

Neural Certificates and Certificate-carrying RL in Large-Scale Autonomy Design

Associate Prof. Chuchu Fan MIT, USA

Abstract: Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics. However, this performance often arrives with the trade-off

of diminished transparency and the absence of guarantees regarding the safety and stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies — these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this talk, we present two exciting updates on neural certificates. In the first work, we explore the use of graph neural networks to learn collision-avoidance certificates that can generalize to unseen and very crowded environments. The second work presents a novel reinforcement learning approach that can produce certificate functions with the policies while addressing the instability issues in the optimization process.

Biography: Dr. Chuchu Fan is an Associate Professor in AeroAstro and LIDS at MIT. Before that, she was a postdoc researcher at Caltech and got her Ph.D. from ECE at the University of Illinois at Urbana-Champaign. Her research group, Realm at MIT, works on using rigorous mathematics, including formal methods, machine learning, and control theory, for the design, analysis, and verification of safe autonomous systems. Chuchu is the recipient of the 2020 ACM Doctoral Dissertation Award, an NSF CAREER Award, and an AFOSR Young Investigator Program (YIP) Award.

Invited Talk Session

Invited Talk 3 Thursday, December 5, 4:10 PM - 4:40 PM @ Auditorium (2F)

Chair: Runqi Chi, Beijing Institute of Technology, China

Agrimor: Precision Agriculture Solution Using UAV

Dr. Tiagrajah V. Janahiraman Aerodyne Group, Malaysia

Abstract: Data analytics using Unmanned Aerial Vehicle (UAV) can provide farmers with valuable insights into crop health, nutrient levels, irrigation management, pest infestations, and more. This information can help farmers optimize the use of fertilizers,

pesticides, and water, leading to increased crop yields and reduced costs. Agrimor is a digital precision agriculture platform that provides valuable insights from RGB and Multispectral (MS) data capture using drones. Upon reconstruction of RGB Orthoimages and MS bands, mathematical formulation for vegetation indices will be used for deriving indices map. Vegetation indices (VI) are combinations of surface reflectance of 2 or more wavelengths designed to highlight a particular properties of vegetation. They are derived using the reflectance properties of vegetation. Each of the VIs is designed to accentuate a particular vegetation property. Potential diseases infection and pest infestation is highlighted by vigor analysis. Ability to absorb water and nutrients from ground and state of underground root of crop is described by water uptake analysis. Chlorophyll analysis interprets the presence of green pigmentation on leaves which is essential for photosynthesis process. Other yield limiting factors that may affect the growth of plant is reported in stress analysis. From our past experience, a durian farm was able to increase the yield up to 30% after executing the preventive measures based on our crop insights.

Biography: Ir Dr Tiagrajah is the Chief Technology Officer of Aerodyne Group, which specializes in drone technology, data platform and digital transformation. Aerodyne Group is ranked as number one in Global Drone Service Provider Ranking by Drone Industry Insights, Germany, for three consecutive years: 2023, 2022 and 2021. He is actively involved in agriculture drone design, assembling and drone module development. He leads the R&D activity for plant health evaluation and soil movement estimation using multispectral sensors attached as a payload to the Unmanned Aerial Vehicle (UAV). He architected a web based geographic information system (GIS) platform hosted on cloud to visual and analyse the UAV captured data. The GIS web platform illustrate new perspectives, data-driven mapping styles and intuitive analysis tools to gain location intelligence. His previous roles include Head of Automation and AI and Head of Analytics and Business Insights in an IT shared service company. His responsibility was to provide Analytic and AI solutions to several business groups under the flagship of RGE Group, Singapore, in the field of fibre and palm oil plantation, manufacturing and business processes. Prior to industrial experience, he was a Senior Lecturer in Universiti Tenaga Nasional (UNITEN). He carried out research and consultancy projects in the field of pattern recognition, image processing and manufacturing process modelling & optimization. He accomplished 3 technical consultation projects with TNB Research Sdn Bhd and TNB IT Sdn Bhd. He has graduated 4 postgraduate students and 67 undergraduate students.

[WO1] Special Session and AI

Wednesday, December 4, 14:30-16:00 @ Auditorium (2F)

Chair: Juyoun Park, Korea Institute of Science and Technology, Korea, South

W01.1	14:30-	Personality Trait Prediction Using Text Data from Social Media
	14:40	Sousa, Luis; Sequeira, Joao
		Instituto Superior Técnico - Institute for Systems and Robotics, Portugal
WO1.2	14:40-	Learning-Based Lower-Limb Joint Kinematics Estimation Using Open-Source
	14:50	IMU Data
		Hur, Benjamin; Baek, Sunin; Kang, Inseung; Kim, Daekyum
		Korea University, Korea, South
WO1.3	14:50-	Vertiport Marking Detector for an Instrument Landing System
	15:00	Heo, Hyeonjeong; Lee, Kyuman
		Kyungpook National University, Korea, South
WO1.4	15:00-	FedPGD: Federated Learning with Projected Gradient Descent for Catheter
	15:10	and Guidewire Segmentation
		Kongtongvattana, Chayun; Huang, Baoru; Nguyen, Hoan; Olajide, Olufemi;
		Nguyen, Anh
		University of Liverpool, United Kingdom
WO1.5	15:10-	AI-Assisted Natural Programming of Assistive Robots Using Verbal
virtual	15:20	Commanding with Assistive Robots for the Elderly 🛙 an Explorative Study
		Using IsaacSim and ChatGPT
		Park, Nathan; Yu, Beomyeol
		McLean High School, United States of America
WO1.6	15:20-	Reactive Constraint Relaxation for Urban Environment Navigation
	15:30	Kim, Jinwoo; Koh, Keonyoung; Lee, Samuel Seungsup; Park, Yohan; Park,
		Daehyung
		Korea Advanced Institute of Science and Technology, KAIST, Korea, South
WO1.7	15:30-	VC-2AG: Verb-Conditional 2D Affordance Generation for Robotic
	15:40	Manipulation
		Kim, Geonkuk; Choi, Tae-Min; Park, Juyoun
	45.40	Korea Institute of Science and Technology, Korea, South
WO1.8	15:40-	Real-Time Multi-Object Tracking and Identification Using Sparse Point-
	15:50	Cloud Data from Low-Cost mmWave Radar
		Pico Rosas, Nabih Andres; Vanegas Silva, Maykoll Steven; Auh, Eugene; Jung,
		Hong-ryul; Coutinho, Altair; Montero Cadena, Elvia Estrella; Moon, Hyungpil
WO1.9	15:50-	Sungkyunkwan University, Korea, South Robot Task Planning on Tabletop Environment Based on Small Language
W01.9	16:00	Models
	10.00	Choi, Gawon; Ahn, Hyemin
		Ulsan National Institute of Science and Technology, Korea, South
		oisan wational institute of science and reciniology, Korea, South

[WP1] Poster I

Wednesday, December 4, 16:40-17:40 @ Lobby (2F)

WP1.1	Overcoming Bias towards Base Sessions in Few-Shot Class-Incremental Learning (FSCIL)
	Lee, Myeongjin; Yoon, Jiae; Kim, Ue-Hwan
	Gwangju Institute of Science and Technology (GIST), Korea, South
WP1.2	Virtual Camera Viewpoint Control for Omnidirectional Video-Shooting System
virtual	Dong, Hongyu; Hu, Shaopeng; Wang, Feiyue; Shimasaki, Kohei; Ishii, Idaku Hiroshima University, Japan
WP1.3	Swarm Control of Mobile Robots Using an Alternating Signal-Based Activation Algorithm
	Nguyen, Minh Trieu; Trinh, Duc Cuong; Nguyen Truong, Thinh
	University of Economics Ho Chi Minh City 🛛 UEH, Vietnam
WP1.4	Enhancing Exploration Efficiency Using Uncertainty-Aware Information Prediction
	Kim, Seunghwan; Shin, Heejung; Yim, Gaeun; Oh, Hyondong, UNIST, Korea, South
WP1.5	Sparsity in Social Robotics Experiments: An Abstract View
	Sequeira, Joao
	Instituto Superior Técnico - Institute for Systems and Robotics, Portugal
WP1.6	Contact-Implicit Trajectory Optimization for Quadruped Maneuvers on Non-Flat
	Terrain
	Oh, Seungbin; Kim, Gijeong; Park, Hae-Won
	Korea Advanced Institute of Science and Technology, Korea, South
WP1.7	A Training Method with 3D Feature Space Visualization for Pattern Recognition
	Controlled Myoelectric Prosthetic Hands
	Tsujimoto, Tatsuki; Yamanoi, Yusuke; Jiang, Hai; Yabuki, Yoshiko; Jiang, Yinlai; Yokoi, Hiroshi
	The University of Electro-Communications, Japan
WP1.8	Development of a Compact, Self-Deployable Bio-Inspired Robot for Planetay
	Exploration
	Lee, Seongjun; Lee, Dae-Young
	KAIST, Korea, South
WP1.9	Hierarchical Control of Legged Robots Using Diffusion Models and Reinforcement Learning for Real-Time Motion Tracking
	Lee, Sowoo; Kang, Dongyun; Park, Hae-Won
	Korea Advanced Institute of Science and Technology, Korea, South
WP1.10	High Efficient Magnetic Sensor-Based Drone Charging Station: Robust to Landing
	Position and Orientation Errors
	Son, Jeongwoo; Kim, Chansu; Kang, Sang Hoon
	Ulsan National Institute of Science and Technology (UNIST) / U. of Maryland, Korea,
	South
WP1.11	Effect of Shoulder Girdle Movement on Upper Limb Dummy
	Kim, Minjae; Kang, Sang Hoon
	Ulsan National Institute of Science and Technology (UNIST) / U. of Maryland, Korea, South

[WP1] Poster I

Wednesday, December 4, 16:40-17:40 @ Lobby (2F)

WP1.12	Distributed Estimation-Based Formation Control with Orientation Alignment
	Lee, Chanyong; Lee, Hojin; LEE, JUSANG; Kwon, Cheolhyeon
	Ulsan National Institute of Science and Technology, Korea, South
WP1.13	Chest X-Ray Image Analysis for Lung Disease Detection Using Deep Learning
	Techniques
	Nguyen T., Bao; Nguyen Truong, Thinh
	University of Economics Ho Chi Minh City, Vietnam
WP1.14	B-MCTS for Information-Theoretic Source Search in Urban Environments
	Hyoungho, Park; Jang, Hongro; Seo, Jaemin; Oh, Hyondong
	UNIST, Korea, South
WP1.15	Attitude Control of eVTOL UAV Using Incremental Sliding Mode Control Driven by
	Super-Twisting Disturbance Observer
	Shin, Dongjoon; Park, Heetae; JEONG, HOIJO; Suk, Jinyoung; Kim, Seungkeun
	Chungnam National University, Korea, South
WP1.16	Image SR Based Real-Time UAV Detection and Classification
	Singh, Siddharth; Shin, Hyo-Sang; Tsourdos, Antonios; Felicetti, Leonard
	Cranfield University, United Kingdom
WP1.17	Enhancing Human-Robot Collaboration through Deep Learning Based Pose Estimation
	Using a Single Camera
	Dinh, Binh Khanh; Nguyen Truong, Thinh
	University of Economics Ho Chi Minh City, Vietnam
WP1.18	Sparse Identification of Nonlinear Dynamics-based Model Predictive Control for
	Multirotor Collision Avoidance
	Lee, Jayden Dongwoo; Kim, Youngjae; Kim, Yoonseong; LEE, Seungho; Park, Sanghyeok;
	kim, Seongmin; SHIN, Yuseop; Bang, Hyochoong
	KAIST, Korea, South
WP1.19	Explainable AI Analysis of Autoencoder Reconstruction Error for Hexacopter Motor
	Failure
	LEE, SEUNG SHIN; kim, taegyun; Kim, Yeji; Kim, Seungkeun
	Chungnam National University, Korea, South
WP1.20	Safe Robot Teleoperation with Constrained Nonlinear Disturbance Observer
	Kim, Taehyun; Han, Ji Wan; Kim, Min Jun
	KAIST, Korea, South
WP1.21	Explainable Deep Reinforcement Learning for Patrol Speed Control of Rail-Guided
	Robot System
	Lee, Hosun; Kwon, Jaesung; Chong, Nak Young; Yang, Woosung
	JAIST, Japan
WP1.22	A Study on Mid-Air Collision Avoidance of Lift-Cruise eVTOL UAM Aircraft Using SVO
	Oh, Sungtak; Shin, Jeonghun; Lee, Dongjin; Lawson, Nicholas; Wang, Zihao; Wong, KC
	Hanseo University, Korea, South

[TO1] Control and Planning

Thursday, December 5, 10:50-12:20 @ Auditorium (2F)

Chair: Hae-In Lee, Cranfield University, United Kingdom

T01.1	10:50- 11:00	Traversability-aware Consistent Situational Graphs for Indoor Localization and Mapping
	11.00	Kim, Jeewon; Oh, Minho; Myung, Hyun
		KAIST (Korea Advanced Institute of Science and Technology), Korea,
		South
TO1.2	11:00-	SPACE: A Simulator for Swarm Planning and Control Evaluation
	11:10	Jang, Inmo
		Korea Aerospace University, Korea, South
TO1.3	11:10-	Multimodal Transformer Models for Human Action Classification
	11:20	Varga, Zoltán; Valls Mascaro, Esteve; Sliwowski, Daniel; Lee,
		DongheuiTechnische Universität Wien, Austria
TO1.4	11:20-	Path Planning and Foothold Adaptation for Quadrupedal Locomotion
	11:30	on Challenging Terrain
		LEE, YONGHOON; Kim, Gijeong; Song, Tae-Gyu; Park, Hae-Won
		Korea Advanced Institute of Science and Technology, Korea, South
TO1.5	11:30-	Hedonic Game for Task Allocation in Heterogeneous Multi-Robot
	11:40	Systems
		Kim, Hyeongseop; Jang, Inmo; Oh, Hyondong
		UNIST, Korea, South
TO1.6	11:40-	NM-LIO: Multiple LiDAR-Inertial Odometry Addressing LiDAR
	11:50	Measurement Noise Discrepancy
		Shin, Gunhee; Lee, Seungjae; Oh, Minho; Lee, Dongkyu; Lee, Jaeyoung;
		Seo, Young-Woo; Myung, Hyun
		KAIST (Korea Advanced Institute of Science and Technology), Korea,
		South
TO1.7	11:50-	Adaptive LQR for Spacecraft Rendezvous and Docking Using Deep
	12:00	Reinforcement Learning
		Han, Dong-Woo; Kim, Minchae; Kim, Sung Jun; Choi, Han-Lim
		KAIST, Korea, South
TO1.8	12:00-	An Advanced Air Suspension Control System Utilizing Intelligent
	12:10	Algorithms and Real-Time Terrain Detection
		Saeed, Omer; Kafash hoshiar, Ali; Woods, John
		University of Essex, United Kingdom
TO1.9	12:10-	ESO for UAV Attitude Dynamics Under Offset Weight, via Modification
	12:20	of PX4 Framework
		Marshall, Benjamin; Knowles, James; Liu, Cunjia
		Loughborough University, United Kingdom

[TO2] Design, Sensing, and Optimization

Thursday, December 5, 14:30-16:00 @ Auditorium (2F)

Chair: Runqi Chai, Beijing Institute of Technology, China

TO2.1	14:30-	Multiple Shooting Parameterized Differential Dynamic Programming
	14:40	for Waypoint-Trajectory Optimization
		Xia, Feiran; Chai, Runqi; Chaoyong, Li; He, Shaoming
		Beijing Institute of Technology, China
TO2.2	14:40-	Targetless Extrinsic Calibration Via Penetrating Lines for RGB-D
	14:50	Cameras with Limited Co-Visibility
		Shin, Jaeho; Yun, Seungsang; Kim, Ayoung
		Seoul National University, Korea, South
TO2.3	14:50-	Development, Evaluation, and Design Implications of Manipulation
	15:00	Robot Teaching Pendants Based on UI Design Principles
		Ruozhang, Qian; You, Yue; Ha, Sehoon; Kang, Dongyeop; DONG,
		JEYOUN; Kim, Jennifer
		Georgia Institute of Technology, United States of America
TO2.4	15:00-	Development of Remote Piping Inspection System with Dual-Mode
	15:10	Locomotion Quadruped Robot
		Kim, Hyun-Bin; Kim, Chanseok; Ham, Byeong-Il; Kang, Jeonguk; Choi,
		Minseong; Choi, Keun Ha; Kim, Kyung-Soo
		KAIST, Korea, South
TO2.5	15:10-	Architecture Design and Configuration of Lower-Cost Flying Ad-Hoc
	15:20	Network Based P2P Connection for UAV Swarm Deployment
		Wilfried Yves Hamilton, Adoni; Fareedh-Shaik, Junaidh; Singh, Aastha;
		Richard, Gloaguen; Lorenz, Sandra; Thomas D., Kühne
		Helmholtz-Zentrum Dresden-Rossendorf - (HZDR), Germany
TO2.6	15:20-	Drone-Based Remote Sensing for Yield Estimation of Xisha
	15:30	Watermelon Using Global Scanning
		Zhang, Xiaofei; zheng, yuqin; xun, yi; Yang, Qinghua; Wang, Zhiheng
		Zhejiang University of Technology, China
TO2.7	15:30-	Flat-Foldable Wheel for Small Exploration Robot Swarm
	15:40	Kim, Junseo; Lee, Sung-Jin; Lee, Dae-Young
		Korea Advanced Institute of Science and Technology, Korea, South
TO2.8	15:40-	Recognition and Image Segmentation of Broccoli Head in Fields under
	15:50	Different Lighting Conditions
		Wang, Zhiheng; Xu, Jixing; Zhang, Xiaofei; SHEN, Ao; Yang, Qinghua
		Zhejiang University of Technology, China
то2.9	15:50-	Soft Gripper Equipped with a Variable Loop Actuator
	16:00	CHOE, JUNPIL; Kang, Gyeongji; Song, Kahye
		Korea Institute of Science and Technology, Korea, South

[TP1] Poster II

Thursday, December 5, 16:40-17:40 @ Lobby (2F)

TP1.1	Robust Pose Estimation for Large Displacement Trajectories through Dual-Task
	Learning
	Lee, Jeongwook; Jang, Suji; Kim, Ue-Hwan
TD1 3	Gwangju Institute of Science and Technology (GIST), Korea, South
TP1.2	Blood Pressure Monitoring Difference of Gaussians and Deep Learning
	Kim, Sung Woo; Lee, Jae Young; Kim, Junmo
TD4 0	KAIST, Korea, South
TP1.3	GMM Information Gain-Based Deep Reinforcement Learning for Source Term Estimation
	Lee, Junhee; Jang, Hongro; Park, Minkyu; Oh, Hyondong
	UNIST, Korea, South
TP1.4	Design and Simulation of an Emergency Navigation System for Indoor Swarm Drones
	Ahn, Seunggyu; Lee, Minkyu; Kim, YeonJung; YOU, DONG IL; Lim, Seunghan
	PABLO AIR Co.,Ltd., Korea, South
TP1.5	Learning-Based 3D Human Body Movement Estimation Using Body-Worn Inertial
	Sensors
	Lee, Suyeong; Sheem, Seokyong; Kim, Daekyum
	Korea University, Korea, South
TP1.6	Gimbal Camera-Based Flight Guidance for Striking Illegal Drones
	Lee, Hojun; Lee, Kyuman
	Kyungpook National University, Korea, South
TP1.7	Improving Optical Character Recognition On Partially Broken Khmer Characters In
	Printed Documents
	Hean, Menghang; Peou, Khem Raksa; Cadungog-Uy, Neil Ian; Va, Hongly; Math, Sa;
	Thap, Tharoeun
	Ministry of Post and Telecommunications, Cambodia
TP1.8	Design and Identification of Keypoint Patches in Unstructured Environments
	Park, Taewook; Kim, Seunghwan; Oh, Hyondong
	UNIST, Korea, South
TP1.9	An Efficient Image Filtering Algorithm for UAV-Based Photogrammetry Using ORB
	Feature Matching in Large-Scale Outdoor Environments
	Yim, Gaeun; Hyoungho, Park; Bae, Seonguk; Seo, Jaemin; Oh, Hyondong
	UNIST, Korea, South
TP1.10	Optimal Thrust Estimation Considering Actual Thrust Fitting of Quadrotors
	Kim, Joonhyun; Kim, Kyunam
	Sungkyunkwan University, Korea, South
TP1.11	Individualized Therapeutic Approaches for Children with ADHD in Virtual Reality (VR)
	Environments: Application and Evaluation of Game-Based Training to Facilitate
	Parallel Thinking
	Kim, Haeun; Kim, Taehong; Jeong, Jiwoo; Hwang, Jooyeong; Kim, Dongmyeong; Lee,
	WonHyong
	Handong Global University, Korea, South

[TP1] Poster II

Thursday, December 5, 16:40-17:40 @ Lobby (2F)

TP1.12	Predictive Localization Uncertainty-aware Planning for Safe Exploration
	Lee, Sanghun; Lee, Hojin; Yi, Seunghak; Kwon, Cheolhyeon
	Ulsan National Institute of Science and Technology, Korea, South
TP1.13	An Efficient Solution to the Multi-Depot Vehicle Routing Problem Using
	Reinforcement Learning
	Son, Hakmo; Do, Haggi; Kim, Jinwhan
	KAIST, Korea, South
TP1.14	Real-Time Estimation and Search of Hazardous Emission Source with Multiple
	Mobile Robots
	Park, Minkyu
	Changwon National University, Korea, South
TP1.15	Wheel Speed Estimation for Ground Vehicles Based on ABS Sensors Using Adaptive
	Moving Average Filter
	Lim, Myunghwan; Son, Hungsun
	Ulsan National Institute of Science and Technology, Korea, South
TP1.16	ReDepth: Rectified Activations for Robust Depth Estimation
	Kim, Jiwoo; Shin, Woojae; Shin, Heejung; Kim, Minwoo; Lee, Jinwoo; Oh, Hyondong
	UNIST, Korea, South
TP1.17	Cooperative Mission Planning for Heterogeneous Robots with Energy Constraints
	Duong, Thi Thuy Ngan; Lee, Jungeun; Jeon, Jeong hwan
	Ulsan National Institute of Science and Technology, Korea, South
TP1.18	Real-time Monitoring of Point Cloud Registration in Mixed Reality
	Chang, Hanbeom; Lim, Hansol; Choi, Jongseong
	State University of New York, Stony Brook, United States of America
TP1.19	Decentralized Formation of UAVs with UWB-Based Bias Correction
	Kim, Myunggun; Kim, wansoo; Son, Hungsun
	Ulsan National Institute of Science and Technology, Korea, South
TP1.20	UAV Localization Using CNN-Based Ground Landmark Detection under GNSS-
	Denied Situation
	Seo, Young; RA, CHUNGGIL; Kim, Yeji; kim, taegyun; Kim, Seungkeun; Suk, Jinyoung
	Chungnam National University, Korea, South
TP1.21	Task Scheduling for UAV: A Finite State Machine Based Clustering Algorithm
	Yoon, Jakyung; LEE, JUSANG; Kwon, Cheolhyeon
	Ulsan National Institute of Science and Technology, Korea, South
TP1.22	Hierarchical-Federated-Learning-based Predictive Maintenance in Industrial Edge
	Systems
	Tech, Berinike; Shcherbyna, Volodymyr; Kästner, Linh; Bhuiyan, Teham; Lambrecht,
	Jens
	Technical University Berlin, Germany

[FO1] Robotics Applications in Diverse Tasks I

Friday, December 6, 10:10-11:10 @ Auditorium (2F)

Chair: Joao Sequeira, Instituto Superior Técnico – Institute for Systems and Robotics, Portugal

FO1.1 virtual	10:10- 10:20	Innovative Sensing and Data Processing for Deformation and Texture Classification in Robot-Assisted Minimally Invasive Surgery Govalla, Dema Nua; Rozenblit, Jerzy W University of Nevada, Las Vegas, United States of America
FO1.2	10:20-	Information-Efficient Vicsek Flocking Using Deep Reinforcement
virtual	10:30	Learning
		Kim, Jongyun; Lee, Hae-In; Shin, Hyo-Sang; Tsourdos, Antonios
		Cranfield University, United Kingdom
FO1.3	10:30-	Wind Field Estimation from UAV Data Using Machine Learning
virtual	10:40	Dwivedi, Vijay Shankar; Shin, Hyo-Sang; Tsourdos, Antonios
		Cranfield University, United Kingdom
FO1.4	10:40-	Drone Image Processing for Efficient Obstacle Avoidance in
virtual	10:50	Transmission Line Inspections
		Nazaruddin, Yul Yunazwin; Rahardian, A.S. Reinard; Bandong, steven;
		Romdlony, Muhammad Zakiyullah; Tamba, Tua
		Institut Teknologi Bandung, Indonesia
FO1.5	10:50-	Clustered Temporal Path Planning (CTPP) for Drone Swarms in Real-
virtual	11:00	Time Updated Digital Twins
		Cetinsaya, Berk; Gallagher, Reese; Neumann, Carsten; Reiners, Dirk; Cruz- Neira, Carolina
		University of Central Florida, United States of America
FO1.6	11:00-	Clustering Clients by Port in Large-Scale AutoStore Using Genetic
virtual	11:10	Algorithms
		Ha, Won Yong
		New York University, United States of America

[FO2] Robotics Applications in Diverse Tasks II

Friday, December 6, 11:20-12:20 @ Auditorium (2F)

Chair: Jeong hwan Jeon, Ulsan National Institute of Science and Technology, Korea, South

FO2.1 virtual	11:20- 11:30	A Pressure-Sensitive Bending Waveguide Sensor for Proprioception in a Soft Cylindrical Actuator ALJaber, Faisal; Hassan, Ahmed; Ataka, Ahmad; Vitanov, Ivan; Almeadadi, Noora; ALHAJRI, HIND; AlEnazi, Sara; Al-Marri, Rashid; Choe, Pilsung Qatar University, Qatar
FO2.2	11:30-	Prescribed Vibration Control for Long Slender Remote Systems in
virtual	11:40	Nuclear Decommissioning
		Wang, Xinming; Yan, Yunda; Zhang, Kaiqiang; Liu, Cunjia
		University College London, United Kingdom
FO2.3	11:40-	Modeling Weakly-Instrumented Excavator Arm Dynamics with Stacked-
virtual	11:50	Input LSTM
		Hoffmann, Nicolas; Cohen, Max; Preda, Marius; ZAHARIA, Titus
		Télécom Sudparis, France
FO2.4	11:50-	A Composite Neuronal Model as Miniaturized Visual Modality for
	12:00	Collision Perception
		Wang, mengying; Huang, Jiajun; Sun, Xuelong; Hu, Cheng; Peng, Jigen; Fu, Qinbing
		Guangzhou University, China
FO2.5	12:00-	Synthetic Data Augmentation for Robotic Mobility Aids to Support Blind
	12:10	and Low Vision People
		Hwang, Hochul; Adhikari, Krisha; Rekha Prabhanjan, Satya Shodhaka;
		Kim, Donghyun
		University of Massachusetts Amherst, United States of America
FO2.6	12:10-	Transforming SLAM Data into 3D Gaussian Splatting Models
	12:20	Lim, Hansol; Chang, Hanbeom; Choi, Jongseong
		State University of New York, Stony Brook, United States of America

Campus Map & Parking Areas

Conference Venue

Auditorium Hall (2F.), Main Administration Building (#201) Ulsan National Institute of Science & Technology 50, UNIST-gil, Ulsan 44919, Republic of Korea

Directions to Parking Areas

There are two parking lots near the Gymnasium (#205) and the University-Industry Cooperation Building (#251). Free parking passes will be available at the registration desk.

- P1: Located to your right, past the Main Administration Building (#201).
- P2: Behind the University-Industry Cooperation Building (#251).

